skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frincke, Tessa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Interstellar objects provide a direct window into the environmental conditions around stars other than the Sun. The recent discovery of 3I/ATLAS, a new interstellar comet, offers a unique opportunity to investigate the physical and chemical properties of interstellar objects and to compare them with those of comets in our own solar system. In this Letter we present the results of a 10 night spectroscopic and photometric monitoring campaign with the 2.4 m Hiltner and 1.3 m McGraw–Hill telescopes at the MDM Observatory. The campaign was conducted between August 8 and 17 while 3I/ATLAS was inbound at heliocentric distances of 3.2–2.9 au. Our observations captured the onset of optical gas activity. Nightly spectra reveal a weak CN emission feature in the coma of 3I/ATLAS, absent during the first nights but steadily strengthening thereafter. We measure a CN production rate ofQ(CN) ∼ 6 × 1024s−1, toward the lower end of activity observed in solar system comets. Simultaneous photometry also indicates a small but measurable increase in the coma’s radial profile and increasingr-bandAfρwith values in the order of ∼300 cm. We derived a gas-to-dust production ratio of log Q ( CN ) / A f ρ 22.4 . Our upper limit on the C2-to-CN ratio ( log Q ( C 2 ) / Q ( CN ) 0.8 ) indicates that 3I/ATLAS is a strongly carbon-chain-depleted comet. Further observations of 3I/ATLAS are required to verify the apparent carbon-chain depletion and to explore whether such composition represents a recurring trait of the interstellar comet population. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  2. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026